1.0  Creating a kind of artificial gravity

Just an idea

 

Should it be possible to create a sort of artificial gravitity/force? (for flying cars, skateboards, helicopters without roters, propelling spacecrafts ..)

 

Let´s consider a  rod  turning with a constant angular velocity, and a mass connected to this rod, that can be moved alongside the rod.

 

In position 1 the mass is at its greatest distance r1 from the axis of the rod.

  

 

 

For example: m = 0,5 kg;  r1 = 0,20 m;  T =  0,1 s  (10 revolutions/sec)    -> F1394,8 N

 

 

Now the rod has turned through θ = 180 °  and the mass has been moved towards the centre.

 

For example: m = 0,5 kg;  r2 = 0,05 m;  T =  0,1 s  (10 revolutions/sec)    -> F2 98,7 N

 

F1 - F2  = 296,1 N (= about 30 kgf)

 

 

The rod has turned through an angle  θ2 from position 1 to position 2 with the mass m still at its greatest distance r1 from the axis.

A mechanism connected at the rod (for example a kind of electromagnet) starts pulling the mass m towards the centre.

 

In figure 6 a possible path of mass m is indicated (perhaps some points will be in reality a little bit more smoothed, but I intuit that this is not so important).

If we express the path of the mass m as a function of time, we should be able to calculate the force (as a function of time) that has to be exerted on the mass m to oblige it to follow this path.

This force will be equal, but opposite in sign to the force that the mass m exerts on the rod (on the axis of the rod)

 .

θ(t) = 360/(2π) . ω.t  (in degrees; ω = 2π/T ; T = time of one revolution; the angular velocity is constant)

Programming in Pascal/Delphi:

var m, r1,r2, T: real;
te2, te3, te5, te6 : integer; {angles teta}
mm: Tm_array;

Procedure Calculate;
var radius, radius0, sumax, sumay, tt,tt0, w,
dxdt, dydt, dxdt2, dydt2, x,y, Fx, Fy,
dxdt0, dydt0, dxdt20, dydt20, x0,y0, Fx0, Fy0,
teh, teh0, dtradius, dt2radius: real;
integraalFydt, integraalFxdt : real;
Fymean, Fxmean: real;
dd, dt: real;
te, q, cc: integer; {angle teta=te and angle fhi=q}
strh: string;

begin
T:=0.1; {10 rotations per sec}
w:=2*pi/T; {= 628,3 rad/s angular velocity in rad/sec}
m:=0.1; {0,1 kg}
r1:=0.2; {20 cm}
r2:=0.05; {5 cm}
te2:=50; {50 degrees}
te3:=90;
te5:=230;
te6:=270;
cc:=10; {to get a more accurate calculation}

sumax:=0; {for every degree the acceleration ax of m in the x-direction is calculated; the program sums all the ax}
sumay:=0; {idem for the y-direction}

For te:=1 to (te2*cc) do {we choose that for te=80° = 0,44.pi the mass m starts moving towards the axis: point 2 in fig.6; 1 degree=360/T =360 w/2pi sec)}
Begin
teh:=te/cc; {angle teta} {if te=100 then teh=1 degree, if te=8000 then teh=80 degree, with cc=100}
tt:= 2*pi* teh/(360*w); {time} {if teh=360 then tt=T, angular velocity = constant, so tt = constant * teh}
x:= r1*sin(w*tt); {for example, te=7000 -> angle =70, tt= }
y:= r1*cos(w*tt);
mm[te].x:=x;
mm[te].y:=y;

dxdt:= w*r1*cos(w*tt); {speed}
dydt:= -w*r1*sin(w*tt);
mm[te].vx:=dxdt;
mm[te].vy:=dydt;

dxdt2:= -w*w*r1*sin(w*tt); {accelaration}
dydt2:= -w*w*r1*cos(w*tt);

sumax:=sumax+dxdt2; {dt=T/(360*cc} {after each dt the ax and ay is calculated and all ax and ay are summed together}
sumay:=sumay+dydt2;
End;

For te:=(te2*cc+1) to (te3*cc) do {te2=50, te3=90}
Begin
dd:=te3-te2; {40}
teh:=te/cc; {if te=8001 then teh:=80,01 degree, with cc=100}
tt:= 2*pi* teh/(360 *w);
radius:=(r2+ (r1-r2)*( (te3- teh)/ dd ) ); {between 50° and 90º the radius decreases proportionally with the angle (and so with the time) }
dt:= T/(360*cc);
x:= sin(w*tt)*radius;
y:= cos(w*tt)*radius;
mm[te].x:=x;
mm[te].y:=y;
dxdt:=(mm[te].x-mm[te-1].x)/dt;

dtradius:= (-r1/dd+r2/dd)*360/T; {(-0.1*r1+0.1*r2)*360/T;} {de 1e derivative}
dt2radius:= 0; {the 2e derivative}



{dxdt:= w*cos(w*tt)*radius + sin(w*tt)*dtradius;
dydt:= -w*sin(w*tt)*radius + cos(w*tt)*dtradius;}

dxdt2:= -w*w*sin(w*tt)*radius + w*cos(w*tt)*dtradius + w*cos(w*tt)*dtradius+0;

dydt2:= - w*w*cos(w*tt)*radius - w*sin(w*tt)*dtradius - w*sin(w*tt)*dtradius+0;

{sumax:=sumax+dxdt2;
sumay:=sumay+dydt2;}
End;

For te:=(te3*cc+1) to (te5*cc) do {te5=230}
Begin

teh:=te/cc;
tt:= 2*pi* teh/(360 *w) ; {if teh =180 then tt:= 0,05 is T/2}
x:=r2*sin(w*tt);
y:=r2*cos(w*tt);

dxdt:= w*r2*cos(w*tt);
dydt:= -w*r2*sin(w*tt);

dxdt2:= -w*w*r2*sin(w*tt);
dydt2:= -w*w*r2*cos(w*tt);

sumax:=sumax+dxdt2;
sumay:=sumay+dydt2;
End;

For te:=(te5*cc+1) to (te6*cc) do {te6=270}
Begin
dd:=te6-te5; {40}
teh:=te/cc;
teh0:=(te-1)/cc;
tt:= 2*pi* teh/(360 *w);
tt0:=2*pi* teh0/(360 *w);
radius:= (r1 - (r1-r2) * ((te6 - teh)/dd) ); {between 230° and 270º the radius increases proportionally with the angle and so with the time}
radius0:= (r1 - (r1-r2) * ((te6 - teh0)/dd) );
dtradius:= (r1/dd - r2/dd) *360/T; { (0.1*r1-0.1*r2)*360/T;}

x:= sin(w*tt) * radius;
y:= cos(w*tt) * radius;
x0:= sin(w*tt0) * radius0 ;
y0:= cos(w*tt0) * radius0;

dxdt:= (x-x0)/(tt-tt0); {w*cos(w*tt)*radius+sin(w*tt)*dtradius}
dydt:= (y-y0)/ (tt-tt0); {-w*sin (w*tt)*radius+cos(w*tt)*dtradius;}

dxdt2:= -w*w*sin(w*tt)*radius + w*cos(w*tt)*dtradius + w*cos(w*tt)*dtradius + 0;
dydt2:= -w*w*cos(w*tt)*radius - w*sin(w*tt)*dtradius + - w*sin(w*tt)*dtradius + 0;

{ sumax:=sumax+dxdt2;
sumay:=sumay+dydt2; }

End;

For te:=(te6*cc+1) to (360*cc-1) do
Begin
teh:=te/cc;
tt:= 2*pi* teh/(360 *w) ;
x:=r1*sin(w*tt);
y:=r1*cos(w*tt);


dxdt:= w*r1*cos(w*tt);
dydt:= -w*r1*sin(w*tt);

dxdt2:= -w*w*r1*sin(w*tt);
dydt2:= -w*w*r1*cos (w*tt);

sumax:=sumax+dxdt2;
sumay:=sumay+dydt2;
End;
{suamay = cc*360 }


Fy:=m*sumay; {= m * (dFy1+dFy2+dFy3+....) }
Fx:=m*sumax;

integraalFydt:=Fy*(T/(360*cc)); {= dFy1*dt+dFy2*dt+... = (dFy1+dFy2+..)*dt = Fmean * T} {dt=T/(360*cc}
integraalFxdt:=Fx*(T/(360*cc));

Fymean:=integraalFydt/T;
Fxmean:=integraalFxdt/T;

str(Fymean:0,strh);
form1.label2.caption:=strh;

str(Fxmean:0,strh);
form1.label3.caption:=strh;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
Calculate;
end;

end.

 

We´ll get a net accelarion upwards?

Let´s run the program and find out ... ??????

The result are strange values..   probably cause: when the mass starts to move towards the centre, the speed alongside the radius has suddenly a value, which in reality is not possible. It should feel an accelaration towards the centre and increase the speed towards the centre as a function of time, and later on get a deaccelaration and then slowly approaching the centre.

----------------

Let´s calculate the following:  (should be quite easy to contruct..)

 

The mean accelaration in the y-direction is the integral of f"(t) dt over T = > the surface of ff" under the horizontal axis = the surface of ff" above the horizontal axis.

f´(t) is the primitive function of f"t), if you follow the red curve of f´(t) you will see easily that the surface under = surface above over one period T.

=> the mean accelaration in the y-direction = zero

Newton's first law holds ...


 

https://www.derivative-calculator.net/

https://patents.google.com/patent/US3683707A/en  (a device to convert a circular movement into a linear force)

https://www.youtube.com/watch?v=r7NPx3dRpUw

https://www.youtube.com/watch?v=obnxoJsBDGQ

 

 

 

 

 

14 February 2020      by  Rinze Joustra        www.valgetal.com